RATE OF FLOW AND SOLENOID SHUT OFF CONTROL VALVE

INTRODUCTION

This specification covers the design, manufacture, and testing of 1-1/2in. (40 mm) through 36 in. (900 mm) Control Valves

PART 1 - GENERAL

1. Standard products - use the same manufacturer for multiple units of same type.

2. "Tying" of equipment into packages for the purpose of thwarting competition shall be considered to be in non-compliance with these specifications.

3. Manufacturers shall price items under different subsections or sections separately.

PART 2 - PRODUCTS

2.01 RATE OF FLOW AND SOLENOID SHUT OFF CONTROL VALVES

A. FUNCTION

The Rate of Flow Control Valve shall automatically throttle and limit flow to a preset maximum rate, regardless of changing line pressure, by sensing the differential across a sized orifice plate. Flow rate is adjustable by changing the pilot set point. When differential pressure across the orifice plate is less than the pilot set-point the rate of valve opens allowing flow to meet the pre-determined demand. If differential pressure across the orifice plate exceeds the pilot set point, the rate of flow valve closes, limiting the flow to a preset maximum. The solenoid control shall intercept the rate of flow control and allow for remote override capability to close the main valve.

B. MATERIALS

1. Material Specification for the Rate of Flow Solenoid Shutoff Main Valve as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body & Cover</td>
<td>Ductile Iron-ASTM A536</td>
</tr>
<tr>
<td></td>
<td>Cast Steel or Bronze (optional)</td>
</tr>
<tr>
<td>Main Valve Trim</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td></td>
<td>Other Materials Available (optional)</td>
</tr>
<tr>
<td>Seat</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td></td>
<td>Other Materials Available (optional)</td>
</tr>
<tr>
<td>Stem, Nut and Spring</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Seal Disc</td>
<td>Buna-N® Rubber</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Nylon Reinforced Buna-N® Rubber</td>
</tr>
<tr>
<td></td>
<td>Other Materials Available (optional)</td>
</tr>
<tr>
<td>Internal Trim Parts</td>
<td>Stainless Steel: Bronze; Brass</td>
</tr>
<tr>
<td>End Detail</td>
<td>Flanged (24" – 36")</td>
</tr>
<tr>
<td>Pressure Rating</td>
<td>Class 150 lb. (250psi Max.)</td>
</tr>
<tr>
<td></td>
<td>Class 300 lb. (400psi Max.)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Water to 180°F</td>
</tr>
<tr>
<td>Any other wetted metallic parts</td>
<td>Stainless Steel; Bronze; Brass</td>
</tr>
<tr>
<td>Coating</td>
<td>Fusion Bonded Epoxy Coating (Interior and Exterior); ANSI / NSF 61 Approved / AWWA coating specifications C116-03.</td>
</tr>
</tbody>
</table>

Optional Accessories

Position Indicator, Position Transmitter, Limit Switch, Opening & Closing Speed Controls, Check Feature, Isolation Valves, Gauges, Anti Cavitation Trim, Etc.
C. MANUFACTURE

1. Main Valve:
 a. The main valve shall be full ported, hydraulically operated, single diaphragm actuated, globe pattern. The valve shall consist of four major components; the body with seat installed; the cover with bearing installed; the intermediate chamber with bearing installed and the diaphragm assembly. The diaphragm assembly shall be the only moving part and shall form a seal between the cover chamber, the intermediate chamber and the body. An O-ring seal in the intermediate chamber separates operating pressure from line pressure. Packing glands, stuffing boxes and/or rolling diaphragm technology will not be permitted and there shall be no pistons operating the main valve. Y-pattern valves shall not be permitted. Main valve shall be certified by NSF/ANSI Standard 61 as a safe drinking water system component.

2. End Connections:
 a. End Connections for control valve shall be flanged per ASME/ANSI B16.42, Class 150 or Class 300 (1-1/2" thru 36") or Threaded End Connections (1-1/2" thru 3") or Grooved End Connections (1-1/2" thru 8").

3. Main Valve Body:
 a. No separate chamber(s) below the diaphragm shall be allowed between the main valve cover and body. No fabrication or welding shall be used in the manufacturing process.
 b. The valve shall contain a resilient, synthetic rubber disc with a rectangular cross-section contained on three and one half sides by a disc retainer and forming a tight seal against a single removable seat insert. No O-ring type discs (circular, square, or quad type) shall be permitted as the seating surface. The disc guide shall be of the contoured type to permit smooth transition of flow and shall hold the discs firmly in place. The disc retainer shall be of a sturdy one-piece design capable of withstanding opening and closing shocks. It must have straight edge sides and a radius at the top edge to prevent excessive diaphragm wear as the diaphragm flexes across this surface. No hours-glass shaped disc retainers shall be permitted and no V-type or slotted-type disc guides shall be used.
 c. The diaphragm assembly containing a non-magnetic 303 stainless steel stem; of sufficient diameter to withstand high hydraulic pressures and shall be fully guided at both ends by a bearing in the main valve cover and an integral bearing in the valve seat. The valve seat shall be a solid, one-piece design and shall have a minimum five-degree taper on the seating surface for a positive, drip-tight shut off. No center guides shall be permitted. The stem shall be drilled and tapped in the cover end to receive and affix such accessories as may be deemed necessary. The diaphragm assembly shall be the only moving part and shall form a sealed chamber in the upper portion of the valve, separating the operating pressure from the line pressure. No bolts or cap screws shall be permitted for use in the construction of the diaphragm assembly.
 d. The flexible, non-wicking, FDA approved diaphragm shall consist of nylon fabric bonded with synthetic rubber compatible with the operating fluid. The diaphragm’s center hole for the main valve stem must be sealed by the vulcanized process or a rubber grommet sealing the center stem hole from the operating pressure. The diaphragm must withstand a Mullins Burst Test of a minimum of 600 X per layer of nylon fabric and shall be cycled tested 100,000 times to insure longevity. The diaphragm shall not be used as the seating surface. The diaphragm shall be fully supported in the valve body and cover by machined surfaces which support no less than one-half of the total surface area of the diaphragm in either the fully opened or fully closed position. Bellofram type rolling diaphragms shall not be permitted.
 e. The main valve seat and stem bearing in the valve cover shall be removable. The main valve seat shall be retained by flat head machine screws for ease of maintenance. The lower bearing of the valve stem shall be contained concentrically within the seat and shall be exposed to the flow on all sides to avoid deposits. To insure proper alignment of the valve stem, the valve body and cover shall be machined with a locating lip. No “pinned” covers to
the valve body shall be permitted. Cover bearing, disc retainer and seat shall be made of the same material. All necessary repairs and/or modifications other than replacement of the main valve body shall be possible without removing the valve from the pipeline. The valve shall be designed such that both the cover assembly and internal diaphragm assembly can be disassembled and lifted vertically straight up from the top of a narrow opening/vault. Y-pattern valves shall not be permitted. The seat shall be of the solid one piece design. Two piece seats or seat inserts shall not be permitted. Packing glands and/or stuffing boxes shall not be permitted.

4. Pilot Control System:

a. The rate of flow pilot control shall be a direct-acting, adjustable, spring-loaded, normally open, diaphragm valve designed to close when the controlling differential exceeds the adjustable spring setting. The pilot control is normally held open by the force of the compression on the spring above the diaphragm and it closes when the pressure acting on the underside of the diaphragm exceeds the spring setting. The rate of flow pilot control shall have a second downstream sensing port which can be utilized to install a pressure gauge. Spring chamber of rate of flow pilot, above the diaphragm, shall sense the lower downstream pressure created by the orifice plate or other differential producing device. Pilot to be manufactured by control valve manufacture. Pilot shall be NSF Certified.

b. The solenoid shutoff pilot control shall be a direct acting three-way poppet solenoid valve controlled by an external electrical power source. Solenoid shall have a NEMA IV enclosure.

c. The pilot control system shall include a strainer and a fixed orifice closing speed. No variable orifices shall be permitted. The pilot control system shall include all required control accessories, equipment, control tubing and fittings.

d. An orifice plate flange assembly shall be included and mounted one to five pipe diameters downstream of the rate of flow control valve. The contractor shall connect the sensing line between the pilot system and the orifice plate assembly.

5. Material Specification for Pilot Controls:

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body & Cover</td>
<td>Bronze, Low Lead CuZn21Si3P or UNS C87850 Stainless Steel (optional)</td>
</tr>
<tr>
<td>Pilot Trim</td>
<td>Brass & Stainless Steel 303</td>
</tr>
<tr>
<td>Rubber</td>
<td>Buna-N®</td>
</tr>
<tr>
<td>Connections</td>
<td>FNPT</td>
</tr>
<tr>
<td>Pressure Rating</td>
<td>400 psi Max.</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Water to 180°F Max.</td>
</tr>
<tr>
<td>Control Tubing</td>
<td>Copper</td>
</tr>
<tr>
<td>Control Fittings</td>
<td>Stainless Steel (optional)</td>
</tr>
<tr>
<td></td>
<td>Flexible Braided Stainless Steel (optional)</td>
</tr>
<tr>
<td></td>
<td>Polyethylene (optional)</td>
</tr>
</tbody>
</table>

6. Material Specification for Solenoid Pilot Control:

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body</td>
<td>Brass B283 (standard) Stainless Steel (optional)</td>
</tr>
<tr>
<td>Pilot Trim</td>
<td>Brass & 303 Stainless Steel</td>
</tr>
<tr>
<td>Seals and Disc</td>
<td>NBR</td>
</tr>
<tr>
<td>Core and Plugnut</td>
<td>430F Stainless Steel</td>
</tr>
<tr>
<td>Core Springs</td>
<td>302 Stainless Steel</td>
</tr>
<tr>
<td>Shading Coil</td>
<td>Copper</td>
</tr>
</tbody>
</table>
Disc-Holder
Core Guide
Connections
Pressure rating
Temperature Range
Power Supply
Solenoid Enclosure
Auxiliary Diaphragm valves
Body & Cover
Trim
Rubber
Connections
Pressure rating
Temperature Range
Pilot Control Tubing
Pilot Control Fittings
7. Material Specification for Orifice Plate Assembly
Component
Plate Holder
Orifice Plate
Sensing Connections
Material
Ductile Iron-ASTM A536 (standard)
Stainless Steel 302
FNPT
8. Factory Assembly:
 a. Each control valve shall be factory assembled.
 c. For all control valves, the factory assembly shall include the complete main valve, pilot valve(s), and all associated accessories and control equipment.
 d. During factory assembly the control valve manufacture shall make all necessary adjustments and correct any defects.
9. Nameplates:
 a. Each Control Valve, associated pilot(s) and orifice plate assembly shall be provided with an identifying nameplate.
 b. Nameplates, depending on type and size of control valve, shall be mounted in the most practical position possible, typically on the inlet side of the valve body.
c. Nameplates shall be brass and a minimum of 3/32” thick, ¾” high and 2-3/4” long.

d. Pertinent control valve data shall be etched or stamped into the nameplate. Data shall include control valve Catalog number, function, size, material, pressure rating, end-connection details, type of pilot controls used and control adjustment range.

10. Factory Testing:

a. Each control valve shall be factory tested.

b. The Quality Management System of the factory shall be certified in accordance with ISO 9001: 2008

c. Tests shall conform to approved test procedures.

d. The standard factory tests shall include a valve body and cover leakage test, seat leakage test and a stroke test. Control valves and pilot valves, in the partially open position, with both ends closed off with blind flanges (valves) and pipe plugs (pilots), shall be subject to an air test. The applied air pressure shall be 90 psi minimum. All air pressure tests shall be applied for a minimum of 15 minutes. No visible leakage is permitted through the valve seat, the pressure boundary walls of the valve body, valve cover, pilot body, pilot cover or the body-cover joint.

e. Control valve manufacturer shall, upon request, offer additional testing, such as high pressure hydrostatic testing, positive material inspection testing, ferrite testing, liquid penetration inspection testing, magnetic particle examination testing and radiographic examination testing.

D. PRODUCT DATA

1. The following information shall be provided:

a. Control Valve manufacturer’s technical product data.

b. Control Valve manufacturer’s Installation, Operation and Maintenance manual (IOM).

2. Provide specific information on all optional features specified above and confirm that these items are provided.

3. The valve manufacturer shall be able to supply a complete line of equipment from 1-1/2” through 36” sizes and a complete selection of complementary accessories and equipment.

4. The control valve manufacture shall provide a computerized cavitation analysis report which shows flow rate, differential pressure, and percentage of valve opening. Cv factor, system velocity, and if there will be cavitation damage.

5. The manufacturer must also provide valve noise levels according to International Standards over the flow range of the valve. Noise calculation program will be specific to the control valve manufacturer, and based upon tests conducted by a third party, independent laboratory and will be able to provide dBA values for octave band frequencies between 31.5 and 8000 Hz. (Valves with KO trim calculations are per another industry accepted standard without the octave band frequency noise levels). Generic, third party noise calculation for non-specific control valves will not be accepted.

PART 3 - EXECUTION

A. DELIVERY, STORAGE AND HANDLING

1. Delivery

 a. The Manufacture shall deliver the control valves to:

 Address, City, State, Zip. Attention: Phone number:
 Call 48 hours prior to delivery.
b. Upon delivery, control valves to be unloaded and stored by the:

Owner, district or municipality.

2. Packing and Shipping

a. Control valves specified herein shall be factory assembled. Any control valve appurtenances, accessories, parts and assemblies that are shipped unassembled shall be packaged and tagged in a manner that shall protect the equipment from damage and facilitate the final assembly in the field.

b. Care shall be taken in loading, transporting and unloading to protect control valves, appurtenances, or coatings from damage. Equipment shall not be dropped. All control valves and appurtenances shall be examined before installation and no piece shall be installed which is found to be defective. Any damage(s) shall be repaired.

c. Prior to shipping, the control valves and all associated accessories shall be acceptably packaged and covered to prevent entry of foreign material.

All packaged control valves shall be shipped, remain covered and stored on site until they are installed and put into use.

B. FIELD TESTING

1. A direct factory representative shall be made available by the equipment supplier for start-up service, inspection and necessary adjustments.

PART 4 – LINK2VALVES™ CONTROL VALVES SERVICE ASSET MANAGEMENT

A. GENERAL FUNCTION
A maintenance scheduling software package is to be provided with the control valves supplied. This software shall be available to be run on mobile devices, available on either Google or Apple app sites and will be synchronized with a custom website portal. The software will allow for picture taking, geo-locating, and detailed service records to be maintained and available both on a website and remotely on a hand-held device.

B. STORAGE
Hosting servers are to be secure and maintained in the valve supplier’s own servers and facility, not a third-part location. The program is to be custom developed for automatic control valves by the control valve manufacturer and must be able to prove a minimum of 3,000 valves in the database in order to be considered.

C. Software is to be Link2Valves™ by Cla-Val Company.

The Control Valve manufacturer shall warrant the valve to be free of defects in material and workmanship for a period of three years from date of shipment provided the valve is installed and used in accordance with all applicable instructions. Electrical components shall have a one-year warranty.

The control valve shall be CLA-VAL Company Model No. 40-01, Rate of Flow Control Valve, as manufactured by Cla-Val Co., Costa Mesa, CA 92627-4416.

END OF SECTION

PS-40-01 (R-05-26-20)